1. Generator Load Bank
Provide a fan-cooled resistive load bank for permanent, on-site installation as a component of the emergency power system. The load bank is to be used for periodic, scheduled, supervised maintenance exercise and testing of the emergency power source. The load bank shall be designed to operate from a remote control panel. Except as otherwise indicated, the load bank and ancillary components shall be of types, sizes, characteristics, and ratings indicated, which comply with manufacturer's standard design, materials, components, and construction in accordance with published product information, and as required for complete installation.

Manufacturers
Subject to compliance with requirements, the load bank shall be SEPHCO type or approved equivalent.

2. Sequencing and Scheduling
(a) Schedule delivery of load bank equipment, which permits ready building ingress for large equipment components to their designated installation spaces.
(b) Co-ordinate the size and location of concrete equipment pads.
(c) Co-ordinate with other electrical work including location of raceway entries and fittings, and cabling/wiring work, as necessary to interface installation of load bank with other works.

3. Load Bank Type
(a) Capacity : XXXXkW
(b) Power Factor : 1.0
(c) Load Steps : XXXkW resolution
(d) Voltage : XXXV 3 phase Delta
(e) Frequency : XXHz
(f) Ambient Temperature : 5° to 45° C
(g) Duty Cycle : Continuous
(h) Control Voltage : XXXV

4. Load Bank Design
The load bank shall be completely self contained, free standing unit, incorporating all resistive elements, load contactors for each load group, individual load group circuit breakers, load bank protection devices, main load busbar, auxiliary terminals, fan cooling systems, malfunction detection system, unit controller, remote control facility and IP55 type control enclosure.

5. Enclosure
(a) The load bank switchgear enclosure shall be to IP55 rating, have fully opening hinged doors to provide full and clear access to all the resistor connections and switchgear, and fitted with lift-off type hinges and tool operated chrome plated locks. The door openings shall have a full gutter surround, fitted with a neoprene rubber, wire reinforced type gasket.
(b) Cooling airflow through the resistor chamber shall be vertical discharge, with cold air intake at the bottom and hot air exhaust at the top. Temperature rise of the control and the load bank resistor compartment shall not exceed 20° C above ambient temperature. The cool air intake at the base of the load bank and at the exhaust exit shall be fully protected by screens having 12 x 20 mm maximum openings. The load bank resistor chamber and materials including resistors, shall be able to withstand direct rain and meet IP65 conditions. Gravity dampers shall not be relied upon to meet the IP65 conditions. Load bank construction such as body panels and doors shall be zinc coated steel. Load bank chassis and framework shall be steel, hot dipped galvanized after construction. All external securing devises such as screws, nuts and bolts shall be of #316 stainless steel. The load bank paint system shall be two-pack primer Sea-Prime 202, finished with two coats of two-pack polyurethane acrylic Sea-Thane 707 marine grade enamel.

(c) The load bank shall include forklift channels and approved lifting hooks. Lifting of the load bank using chains or slings shall not distort or damage the load bank

6. Load Resistors
(a) The load resistors shall be totally immersion proof type IP65, impervious to heavy rain, ice, and snow build-up. The resistors shall be fully sealed SEPHCO SDL Incoloy sheath, mineral insulated stainless steel finned type. Resistor to resistor contact or to adjacent metal parts shall not impede the performance or cause failure to the resistor. Resistor values shall be accurate to 3.5% of rated value and shall not reduce in value by more than 3.5% at full operating temperature.

(b) Each resistor shall be fixed to the control enclosure by a brass bulkhead fitting sealed by gasket. Resistors shall be fully supported along their length by galvanized steel grids. Each resistor shall be adequately grounded and removable without dismantling adjacent resistors.

(c) Wire type resistors, ceramic supports, plastics, glass reinforced plastic materials, shall not be used in the resistor design.

(d) Resistor terminals shall be fully accessible and segregated from the switchgear. Each resistor shall be easily removable and withdrawn from the rear of the load bank, accessible by removable panels.

(e) Resistor design and rating shall ensure a life span of ten years under normal operating conditions.

7. Short Circuit Protection
(a) Each resistor shall be grounded to the main control enclosure.
(b) Resistor groups shall be limited to 50 kW, evenly balanced over 3 phases, terminated
and switched by a contactor. Each load group shall be protected by a three-pole circuit breaker. Fuses shall not be used.
(c) Contactors for each load group shall be sized to match the breaker capacity and rated for 50° C operation.
(d) Wiring to resistors shall be by flexible multi-stranded copper cable rated to 110° C.
(e) Heavy bus connections shall not be used to terminate the resistors.
Main terminal studs shall be provided directly onto the copper bus. Connections be provided for multiple incoming cables per bus, recommended by the load bank manufacturer.
(f) Cooling system shall be by fans directly driven by 940RPM maximum, IP55 rated motors. Each fan motor shall be protected by a thermal overload and circuit breaker.
(g) Each cooling fan shall have monitoring and trip devices, such as an airflow switch and high limit resettable thermostat connected to the load bank’s control interlock system.
(h) Cooling fans shall be connected to the load bank auxiliary terminals for connections to a dedicated 3 phase circuit from the mains power source, to facilitate a five-minute fan run-on cool-down period after the load bank shutdown.
(i) The load control circuits and fan motor circuits shall operate from an external 240V power source.
(j) Logic control, controlling the operation of the load bank and the remote control panel shall be at 12 volts via a control transformer in the load bank enclosure.

8. Load Bank Remote Controller
The load bank shall include a remote digital controller with touch type keypad and LED load display, which provides the following functions.
- Digital kilowatt display of load value
- Touch key button operation
- Fan "Start"."Stop" buttons
- Kilowatt "UP" – "Down" buttons
- Enter (Master) button
- Emergency "Stop" button
- LED Display:-
 - LED - Load Bank "ON" indication
 - LED - Load Bank "COOLING FAULT" indication
 - LED - Load Bank "FAN RUN-ON" indication
 - Remote-Automatic Load Dump contact facility

(a) Monitoring of the load bank’s fan interlock systems, such as thermostats, airflow switches and fan motor thermal overload devices
(b) Communication and 12 volt power supply to the remote panel.
(c) Cooling fan start-up
(d) Cooling fan automatic shutdown
(e) Remote load dump signalled from the transfer switch, initiating a fan run-on cool down period.
(f) Manual load dump
(g) Variable load adjustment from 0%-100% of generator rating in kW increments specified
(h) Auxiliary contacts for field use to indicate load bank "Operating Normally" and "Load Bank Failure".

9. Load Bank Control Operation
The remote panel shall be the means to control the load bank in the generator test and exercise mode. Manual operation shall only be possible when the automatic transfer switch is in the normal position. When the manual operation is in progress and emergency standby is called for, the remote control panel shall automatically disable the manual mode operation; dump loads and initiate a fan run-on for a period of five minutes.

10. Delivery, Storage and Handling
(a) Deliver load bank to site for receipt by installing contractor. Inspect delivered load bank, at site together with installing contractor, to ensure that there is no damage to the unit.
(b) Any equipment found damaged at time of inspection, shall be removed by Vendor from site and replaced with new.
(c) Deliver load bank and components properly packaged and mounted on pallets or skids to facilitate handling by installing contractor. Utilize factory fabricated type containers or wrapping for load bank to protect unit from damage.
(d) If storage is required, store units in original packaging and protect from weather.
(e) Handle load bank carefully to prevent physical damage to equipment and components. Remove packaging, including opening of crates and containers at site, avoiding any actions which would damage the equipment, prior to inspection of equipment with installing contractor.

11. Field Quality Control
(a) Prior to energizing of circuitry check all accessible connections to manufacturer's torque tightening specifications.
(b) Prior to energising of load bank, check with earth resistance tester phase-to-phase and phase-to-earth insulation resistance levels to ensure requirements are fulfilled.
(c) Prior to energizing of the load bank, check for electrical continuity of circuits, and for short circuits.

12. Adjusting and Cleaning
(a) Adjust operating mechanisms for free mechanical movement.
(b) Touch-up scratched or marred surfaces to match original finishes.

13. Earthing
Provide equipment earthing connections for load bank. Tighten connections to comply with tightening torque to relevant standards to ensure permanent and effective grounds.
14. Demonstration
After wire and cable hook-ups, energize load bank and demonstrate operation in accordance with requirements. Where necessary, correct malfunction units, and then reset to demonstrate compliance.